Hyundai Accent: Description and Operation
OBD-II review
1. Overview
The California Air Resources Board (CARB) began regulation
of On Board Diagnostics (OBD) for vehicles sold in California beginning with
the 1988 model year. The first phase, OBD-I, required monitoring of the fuel
metering system, Exhaust Gas Recirculation (EGR) system and additional emission
related components. The Malfunction Indicator Lamp (MIL) was required to light
and alert the driver of the fault and the need for repair of the emission control
system. Associated with the MIL was a fault code or Diagnostic Trouble Code
(DTC) idenfying the specific area of the fault.
The OBD system was proposed by CARB to improve air quality
by identifying vehicle exceeding emission standards. Passage of the Federal
Clean Air Act Amendments in 1990 has also prompted the Environmental Protection
Agency (EPA) to develop On Board Diagnostic requirements. CARB OBD-II regulations
were followed until 1999 when the federal regulations were used.
The OBD-II system meets government regulations by monitoring
the emission control system. When a system or component exceeds emission threshold
or a component operates outside tolerance, a DTC will be stored and the MIL
illuminated.
The diagnostic executive is a computer program in the Engine
Control Module (ECM) or PowertrainControl Module (PCM) that coordinates the
OBD-II self-monitoring system. This program controls all the monitors and interactions,
DTC and MIL operation, freeze frame data and scan tool interface.
Freeze frame data describes stored engine conditions, such
as state of the engine, state of fuel control, spark, RPM, load and warm status
at the point the first fault is detected. Previously stored conditions will
be replaced only if a fuel or misfire fault is detected. This data is accessible
with the scan tool to assist in repairing the vehicle.
The center of the OBD-II system is a microprocessor called
the Engine Control Module (ECM) or Powertrain Control Module(PCM).
The ECM or PCM receives input from sensors and other electronic
components (switches, relays, and others) based on information received and
programmed into its memory (keep alive random access memory, and others), the
ECM or PCM generates output signals to control various relays, solenoids and
actuators.
2. Configuration of hardware and related terms
1) GST (Generic scan tool)
2) MIL (Malfunction indication lamp) - MIL activity by transistor
The Malfunction Indicator Lamp (MIL) is connected between
ECM or PCM-terminal Malfunction Indicator Lamp and battery supply (open collector
amplifier).
In most cars, the MIL will be installed in the instrument
panel. The lamp amplifier can not be damaged by a short circuit.
Lamps with a power dissipation much greater than total dissipation
of the MIL and lamp in the tester may cause a fault indication.
▷ At ignition ON and engine revolution (RPM)< MIN. RPM, the
MIL is switched ON for an optical check by the driver.
3) MIL illumination
When the ECM or PCM detects a malfunction related emission
during the first driving cycle, the DTC and engine data are stored in the freeze
frame memory. The MIL is illuminated only when the ECM or PCM detects the same
malfunction related to the DTC in two consecutive driving cycles.
4) MIL elimination
● Misfire and Fuel System Malfunctions:
For misfire or fuel system malfunctions, the MIL may be eliminated
if the same fault does not reoccur during monitoring in three subsequent sequential
driving cycles in which conditions are similar to those under which the malfunction
was first detected.
● All Other Malfunctions:
For all other faults, the MIL may be extinguished after three
subsequent sequential driving cycles during which the monitoring system responsible
for illuminating the MIL functions without detecting the malfunction and if
no other malfunction has been identified that would independently illuminate
the MIL according to the requirements outlined above.
5) Erasing a fault code
The diagnostic system may erase a fault code if the same
fault is not re-registered in at least 40 engine warm-up cycles, and the MIL
is not illuminated for that fault code.
6) Communication Line (CAN)
• |
Bus Topology : Line (bus) structure
|
• |
Wiring : Twisted pair wire
|
• |
Off Board DLC Cable Length : Max. 5m
|
- |
Service Mode (Upgrade, Writing VIN) : 500 or 1Mbps)
|
7) Driving cycle
A driving cycle consists of engine start up, and engine shut
off.
8) Warm-up cycle
A warm-up cycle means sufficient vehicle operation such that
the engine coolant temperature has risen by at least 40 degrees Fahrenheit from
engine starting and reaches a minimum temperature of at least 160 degrees Fahrenheit.
9) Trip cycle
A trip means vehicle operation (following an engine-off period)
of duration and driving mode such that all components and systems are monitored
at least once by the diagnostic system except catalyst efficiency or evaporative
system monitoring when a steady-speed check is used, subject to the limitation
that the manufacturer-defined trip monitoring conditions shall all be encountered
at least once during the first engine start portion of the applicable FTP cycle.
10) DTC format
• |
Diagnostic Trouble Code (SAE J2012)
|
• |
DTCs used in OBD-II vehicles will begin with a letter
and are followed by four numbers.
|
The letter of the beginning of the DTC identifies the function
of the monitored device that has failed. A "P" indicates a powertrain device,
"C" indicates a chassis device. "B" is for body device and "U" indicates a network
or data link code. The first number indicates if the code is generic (common
to all manufacturers) or if it is manufacturer specific. A "0" & "2" indicates
generic, "1" indicates manufacturer-specific. The second number indicates the
system that is affected with a number between 1 and 7.
The following is a list showing what numbers are assigned
to each system.
2. |
Fuel and air metering(injector circuit malfunction
only)
|
3. |
Ignition system or misfire
|
4. |
Auxiliary emission controls
|
5. |
Vehicle speed controls and idle control system
|
6. |
Computer output circuits
|
The last two numbers of the DTC indicates the component or
section of the system where the fault is located.
11) Freeze frame data
When a freeze frame event is triggered by an emission related
DTC, the ECM or PCM stores various vehicle information as it existed the moment
the fault ocurred. The DTC number along with the engine data can be useful in
aiding a technician in locating the cause of the fault. Once the data from the
1st driving cycle DTC ocurrence is stored in the freeze frame memory, it will
remain there even when the fault ocurrs again (2nd driving cycle) and the MIL
is illuminated.
4) |
Fuel Pressure (if available)
|
5) |
Vehicle Speed (if available)
|
7) |
Intake Manifold Pressure (if available)
|
8) |
Closed-or Open-loop operation
|
3. OBD-II system readiness tests
1) Catalyst monitoring
The catalyst efficiency monitor is a self-test strategy within
the ECM or PCM that uses the downstream Heated Oxygen Sensor (HO2S) to determine
when a catalyst has fallen below the minimum level of effectiveness in its ability
to control exhaust emission.
2) Misfire monitoring
Misfire is defined as the lack of proper combustion in the
cylinder due to the absence of spark, poor fuel metering, or poor compression.
Any combustion that does not occur within the cylinder at the proper time is
also a misfire. The misfire detection monitor detects fuel, ignition or mechanically
induced misfires. The intent is to protect the catalyst from permanent damage
and to alert the customer of an emission failure or an inspection maintenance
failure by illuminating the MIL . When a misfire is detected, special software
called freeze frame data is enabled. The freeze frame data captures the operational
state of the vehicle when a fault is detected from misfire detection monitor
strategy.
3) Fuel system monitoring
The fuel system monitor is a self-test strategy within the
ECM or PCM that monitors the adaptive fuel table The fuel control system uses
the adaptive fuel table to compensate for normal variability of the fuel system
components caused by wear or aging. During normal vehicle operation, if the
fuel system appears biased lean or rich, the adaptive value table will shift
the fuel delivery calculations to remove bias.
4) Engine cooling system monitoring
The cooling system monitoring is a self-test strategy within
the ECM or PCM that monitors ECTS (Engine Coolant Temperature Sensor) and thermostat
about circuit continuity, output range, rationality faults.
5) O2 sensor monitoring
OBD-II regulations require monitoring of the upstream Heated
O2 Sensor (H2OS) to detect if the deterioration of the sensor has exceeded thresholds.
An additional HO2S is located downstream of the Warm-Up Three Way Catalytic
Converter (WU-TWC) to determine the efficiency of the catalyst.
Although the downstream H2OS is similar to the type used
for fuel control, it functions differently. The downstream HO2S is monitored
to determine if a voltage is generated. That voltage is compared to a calibrated
acceptable range.
6) Evaporative emission system monitoring
The EVAP. monitoring is a self-test strategy within the ECM
or PCM that tests the integrity of the EVAP. system. The complete evaporative
system detects a leak or leaks that cumulatively are greater than or equal to
a leak caused by a 0.040 inch and 0.020 inch diameter orifice.
7) Air conditioning system monitoring
The A/C system monitoring is a self-test strategy within
the ECM or PCM that monitors malfunction of all A/C system components at A/C
ON.
8) Comprehensive components monitoring
The comprehensive components monitoring is a self-test strategy
within the ECM or PCM that detects fault of any electronic powertrain components
or system that provides input to the ECM or PCM and is not exclusively an input
to any other OBD-II monitor.
9) A/C system component monitoring
Requirement:
If a vehicle incorporates an engine control strategy that
alters off idle fuel and/or spark control when the A/C system is on, the OBD
II system shall monitor all electronic air conditioning system components for
malfunctions that cause the system to fail to invoke the alternate control while
the A/C system is on or cause the system to invoke the alternate control while
the A/C system is off.
Additionally, the OBD II system shall monitor for malfunction
all electronic air conditioning system components that are used as part of the
diagnostic strategy for any other monitored system or component.
Implementation plan:
No engine control strategy incorporated that alters offidle
fuel and/or spark control when A/C system is on. Malfuction of A/C system components
is not used as a part of the diagnostic strategy for other monitored system
or component.
Components Location
1. Engine Control Module (ECM)
2. Manifold Absolute Pressure Sensor (MAPS)
3. Intake Air Temperature Sensor (IATS)
4. Engine Coolant Temperature Sensor ...